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On the Milne Problem and the Hydrodynamic Limit
for a Steady Boltzmann Equation Model
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For a stationary nonlinear Boltzmann equation in a slab with a particular trun-
cation in the collision operator, the Milne problem for the boundary layer
together with a weak type of hydrodynamic behavior in the interior of the slab
are studied by nonperturbative methods in the small-mean-free-path limit.
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1. INTRODUCTION

Solutions to half-space problems for the Boltzmann equation play an
important role as boundary layers in the study of hydrodynamic limits for
solutions to the Boltzmann equation when the mean free path tends to
zero. Such problems have been extensively studied in the linear context,
using functional analytic and energy methods ([BCN1, C1, C2, G, GP,
Gu] and others). In the discrete velocity case for the Boltzmann equation
a number of problems have been investigated, among them half-space
problems for the Broadwell model in [BT] and weak shock wave solutions
in [BIU]. The existence of solutions to the half-space problem with given
indata at one end was proven in [CIPS], as well as their convergence to
a set of Maxwellians at infinity. The question whether the limit Maxwellian
can be fixed a priori was answered positively in [U] for a fixed Maxwellian
at infinity which is close to the given indata.

For the full BGK and Boltzmann equations, a wide range of similar
questions have been addressed by the Kyoto group around Y. Sone and
K. Aoki in a perspective of asymptotic analysis and numerical studies.
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Among their papers in this area we mention [S1, S2, SOA1, SOA2], where
extensive references can also be found.

So far there are few purely theoretical results on the half-space
problem and the hydrodynamic limit for the fully nonlinear Boltzmann
equation with continuous velocities. An existence theorem for the half-
space problem was established [GPS] for small data and specular reflexion
boundary conditions. The hydrodynamic limit of solutions of the (evolu-
tionary) Boltzmann equation [DL] towards solutions of the incompressible
Navier�Stokes equations was performed for smooth solutions in [DEL],
[ELM] and for weak solutions in [BGL1, BGL2], complemented in [BU].
In [BCN2], a kinetic description of a gas between two plates at different
temperatures and no mass flux was given in the case of a small mean free
path for the nonlinear stationary Boltzmann equation under diffuse reflec-
tion boundary conditions.

In this paper, we address the half-space problem for the stationary
nonlinear Boltzmann equation in the slab with given indata, for a collision
operator truncated for large velocities and for small values of the velocity
component in the slab direction. Instead of considering the half-space
problem in isolation, it is here studied within a frame of hydrodynamic
limits for solutions to the nonlinear stationary Boltzmann equation in the
slab. This avoids explicitly dealing with what type of Maxwellians that are
permitted at infinity in the half space problem (cf. e.g., [AC, CGS]). An
earlier paper [AN1] considered in the same spirit a fluid approximation
inside a bounded domain together with initial and boundary layers for an
evolutionary linear Boltzmann model of condensation and evaporation.

Existence of solutions to the nonlinear Boltzmann equation in a
bounded slab is proved in [AN2, AN3] (see also [AN4] and [P] for the
related stationary Povzner equation). By the conservation properties of
the Boltzmann collision operator, there are in general at most two
Maxwellians with the same fluxes as the limit of such solutions, when the
mean free path tends to zero. In that limit the existence is proven of solu-
tions to the Milne problem with given indata at the boundary point, and
either convergence to one of those two Maxwellians, or collapse at small
velocities at spatial infinity. One main ingredient in the techniques of the
paper is the use of a kinetic inequality, deduced from the smallness of
the entropy production term, for measuring the distance to the set of
Maxwellians, see [A, N].

The plan of the paper is as follows. Section 2 is devoted to pre-
liminaries and a statement of the main results. In Section 3 the existence of
solutions to the half-space problem is proven. Section 4 describes the
asymptotic behaviour of such half-space solutions, in particular a possible
convergence to one of the at most two Maxwellians having the same fluxes
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as the solution. Finally Section 5 studies a limiting behaviour with hydro-
dynamic aspects in the interior of the slab, when the mean free path tends
to zero.

2. PRELIMINARIES AND STATEMENT OF RESULTS

An integrable cylindrically symmetric Maxwellian

M(v) :=
\

(2?T )3�2 e&((!&u)2+'2+`2)�2T, v=(!, ', `) # R3

(with \�0 and T>0), is uniquely determined by its three moments

\=| M(v) dv, \u=| !M(v) dv, \(u2+T )=| v2M(v) dv

However, it is well known that for nonzero bulk velocity, there can be zero,
one or two Maxwellians with given fluxes

| !M(v) dv, | !2M(v) dv, | !v2M(v) dv

as stated in the following lemma.

Lemma 2.1. Let (ci )1�i�3 , with c1{0, be given.

(i) If c2�0 or c1c3�0 or c1 c3> 25
16c2

2 , there is no Maxwellian with
fluxes (ci )1�i�3 .

(ii) If c1 c3= 25
16 c2

2 , there is a unique Maxwellian with fluxes
(ci )1�i�3 .

(iii) If 0<c2
2<c1c3< 25

16c2
2 , there are two Maxwellians with fluxes

(ci )1�i�3 .

(iv) If c2
2�c1 c3>0, there is a unique Maxwellian with fluxes

(ci )1�i�3 .

For the convenience of the reader, we recall a short proof.

Proof of Lemma 2.1. The unknown \, u, T defining an integrable
Maxwellian M, are solutions to the system

\�0, T>0, \u=c1 , \(u2+T )=c2 , \u(u2+5T )=c3

(2.1)

995Milne Problem for Steady Boltzmann Equation



Since c1{0, there are no positive solutions \ and T when c2�0 or
c1c3�0. Since c1{0,

\=
c1

u
, T=

c2

c1

u&u2

where u is a solution to

4c1u2&5c2u+c3=0 (2.2)

c1u>0, u # &0,
c2

c1 _ (2.3)

and ]0, c2 �c1[ denotes the open interval with end points 0 and c2 �c1 . For
c1c3> 25

16 c2
2 , there is no real solution u to Eq. (2.2). For c1 c3= 25

16c2
2 , the

solution 5c2�8c1 to Eq. (2.2) satisfies (2.3). For 0<c2
2<c1 c3< 25

16c2
2 , both

solutions to Eq. (2.2),

u==
5c2+= - 25c2

2&16c1c3

8c1

, = # [&, +] (2.4)

satisfy (2.3). For c2
2�c1c3>0, only u=(5c2&- 25c2

2&16c1 c3 )�8c1 satisfies
(2.3). K

Remark. We note for c1>0 that 0�u&�u+ , T+�3\2�5�T& .
The Mach number is defined by M 2

= =3u2
= �5T= . Then

u2
= =

c3M 2
=

c1(3+M 2
= )

, T==
3c3

5c1(3+M 2
= )

With

sin2 %=
16c1c3

25c2
2

, 0�%�
?
2

we get

M 2
&(%)=

3
4 ctg2 %�2&1

, M 2
+(%)=

3
4 tg2 %�2&1

where M&(%) is subsonic and M+(%) is supersonic.
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Define for 0<+<*

V* :=[v # R3; |v|�*], V$*=[v # V* ; +�|!|]

By a perturbative argument there are *0<� and 0<+0 , so that in the
sense of the following lemma, for *�*0 , 0<+<+0 , (iii)�(iv) of Lemma 2.1
hold for the Maxwellian fluxes, also when the integrals are truncated with
respect to V$* .

Lemma 2.2. Let (ci )1�i�3 , with 0<c1 c3< 25
16c2

2 and c1c3{c2
2 be

given. There are *0<� and +0>0, such that for *�*0 , + # ]0, +0[,
(iii)�(iv) of Lemma 2.1 hold for the truncated Maxwellian fluxes

(c1 , c2 , c3)=\|V$*

!M(v) dv, |
V$*

!2M(v) dv, |
V$*

!v2M(v) dv+ (2.5)

In the case c1c3=c2
2 , let (\& , u& , T&) be the values of (\, u, T ) for *=�,

+=0 when ==& in (2.4), and correspondingly (\+ , u+ , T+) with T+=0
for ==+. Given any neighbourhoods O& and O+ of (\& , u& , T&) and
(\+ , u+ , T+) respectively, then (\(*, +), u(*, +), T (*, +)) is either in O&

or in O+ for *, +&1 large enough. Moreover, (\(*, +), u(*, +), T (*, +)) is
uniquely determined in the O& -case.

Proof of Lemma 2.2. We discuss the case c1>0. The case c1<0 is
analogous.

For (ci )1�i�3 with 0<c1 c3< 25
16c2

2 , consider

F(*, +, \, u, T )=(F1 , F2 , F3)(*, +, \, u, T )

where

F1(*, +, \, u, T ) :=
\

(2?T )3�2 |
V $*

!e&(|v&u|2)�2T

F2(*, +, \, u, T ) :=
\

(2?T )3�2 |
V $*

!2e&(|v&u|2)�2T

F3(*, +, \, u, T ) :=
\

(2?T )3�2 |
V $*

!v2e&(|v&u|2)�2T
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At (*, +, \, u, T ) with \�0, T>0, *&1=+=0, it holds that

�F1

�\
=u,

�F1

�u
=\,

�F1

�T
=0

�F2

�\
=u2+T,

�F2

�u
=2\u,

�F2

�T
=\

�F3

�\
=u(u2+5T ),

�F3

�u
=\(3u2+5T ),

�F3

�T
=5\u

and so the Jacobian J with respect to (\, u, T ) of F at (�, 0, \, u, T ) is
equal to

J=\2u(3u2&5T )

At any (\0 , u0 , T0) of Lemma 2.1 such that T0{0, and such that

F(�, 0, \0 , u0 , T0)=(c1 , c2 , c3)

with 0<c1c3< 25
16c2

2 , it holds that

J=8c2
1 \u0&

5c2

8c1+{0

Consequently, by the implicit function theorem, there are neighborhoods
V1 of (�, 0) with V1=[*>*0 , 0�+<+0], and V2 of (�, 0, \0 , u0 , T0)
respectively, and a C1 function G from V1 to R3, so that for (*, +) # V1 ,
T0>0, it holds that

(c1 , c2 , c3)=F(*, +, \, u, T ), and (*, +, \, u, T ) # V2

if (\, u, T )=G(*, +)

The neighbourhoods can be taken locally constant with respect to c.
Assume that there are other solutions than the above local perturbations
for arbitrarily large * and for arbitrarily small +. Then there is a sequence
(*n , +n)n # N tending to (�, 0), when n � +� and a sequence
(\n , un , Tn)n # N , satisfying

c=(c1 , c2 , c3)=F(*n , +n , \n , un , Tn), \n>0, Tn>0 (2.6)

By the positivity of c1 it follows that un>0. Writing V $*n
for V $* with *=*n ,

+=+n , we discuss separately the cases, when (\n , un , Tn) is bounded and
unbounded.
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Case 1. (\n , un , Tn) is bounded, hence converges (up to a sub-
sequence) to some (\

*
, u

*
, T

*
).

Case 1(i). T
*

>0. Passing to the limit when n tends to +� in (2.6)
implies that F(�, 0, \

*
, u

*
, T

*
)=c. Hence, by Lemma 2.1, (\

*
, u

*
, T

*
) is

one of the (at most) two solutions of the case *=�, +=0. Then, for n
large enough, (\n , un , Tn) is in a given neighbourhood of (\

*
, u

*
, T

*
).

Hence in this case only the previous local perturbative Maxwellians exist.

Case 1(ii). T
*

=0, u
*

{0. Then \n �(2?Tn)3�2 e&(|v&un|2)�2Tn con-
verges for the weak* topology of bounded measures to \

*
$v=u*

. Hence,

c2
2=\ lim

n � +�

\n

(2?Tn)3�2 |
V $*n

!2e&(|v&un|2)�2Tn dv+
2

=(\
*

u2

*
)2

=(\
*

u
*

)(\
*

u3

*
)=\ lim

n � �

\n

(2?Tn)3�2 |
V $*n

!e&(|v&un|2)�2Tn dv+
_\ lim

n � �

\n

(2?Tn)3�2 |
V $*n

!v2e&(|v&un|2)�2Tn dv+=c1 c3

and (\
*

, u
*

, T
*

)=(\+ , u+ , T+) in the notation of (2.4).

Case 1(iii). T
*

=0, u
*

=0. Then

c1= lim
n � +�

\n

(2?Tn)3�2 |
V $*n

!e&(|v&un|2)�2Tn dv

� lim
n � +�

\n

(2?Tn)3�2 |
V $*n

|!|e&(|v&un|2)�2Tn dv

� lim
n � +�

\n

- ? | |un+x - 2Tn |e&x2 dx=0

which contradicts the assumption c1>0.

Case 2(i). The sequence (\n , un , Tn) is unbounded with��for a sub-
sequence��limn � +� un=+�. Then, for any A>0 there is nA # N, such
that for n�nA ,

\n

(2?Tn)3�2 |
c1!>2A, |v|<*n

!e&(|v&un|2)�2Tn dv>
c1

2

999Milne Problem for Steady Boltzmann Equation



Then,

c2= lim
n � +�

\n

(2?Tn)3�2 |
|v|<*n, |!|>+n

!2e&(|v&un|2)�2Tn dv

> lim
n � +�

2A\n

c1(2?Tn)3�2 |
c1!>2A, |v|<*n

!e&(|v&un|2)�2Tn dv>
c1

2
2A
c1

=A

which contradicts the finiteness of c2 .

Case 2(ii). limn � +� Tn=+�, limn � +� un=u
*

�0 and finite.
Then

0<c1= lim
n � +�

\n

(2?Tn)3�2 |
V $*n

!e&(|v&un|2)�2Tn dv

� lim
n � +�

\n

(2?Tn)3�2 |
V*n

|!|e&(|v&un|2)�2Tn dv

Analogously,

c2= lim
n � +�

\n

(2?Tn)3�2 |
V $*n

!2e&(|v&un|2)�2Tn dv

�
1
2

lim
n � +�

\n

(2?Tn)3�2 |
V*n

!2e&(|v&un|2)�2Tn dv

In this case the integral representation of a bound from below of c2 �c1 has
infinite limit when n � �, which leads to a contradiction.

Case 2(iii). The sequence (\n , un , Tn) is unbounded and the sequen-
ces (un) and (Tn) are bounded. Then

(c1 , c2 , c3)=
\n

(2?Tn)3�2 |
V $*n

!(1, !, v2) e&(|v&un|2)�2Tn dv

coincides with the limit when n � � of

(cn
1 , cn

2 , cn
3)=

\n

(2?Tn)3�2 |
|!|>+n

!(1, !, v2) e&(|v&un|2)�2Tn dv

For T
*

>0 this contradicts the boundedness of c2 . If T
*

=0, u
*

>0, then

0= lim
n � �

cn
2

\n
= lim

n � +�

1
(2?Tn)3�2 |

|!|>+n

!2e&(|v&un|2)�2Tn dv= lim
n � +�

u2
n=u2

*
>0
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which is impossible. It remains the case T
*

=u
*

=0. Then

c1= lim
n � +�

\n

- 2?Tn
|

+�

+n

!(e&(!&un)2�2Tn&e&(!+un)2�2Tn) d!

Hence, by an integration by parts,

c1= lim
n � +� {\n �Tn

2?
(e&(+n&un)2�2Tn&e&(+n+un)2�2Tn)

+
\nun

- 2?Tn
|

+�

+n

(e&(x&un)2�2Tn+e&(x+un)2�2Tn) dx= (2.7)

Analogously,

c2= lim
n � +� _\n �Tn

2? {+n(e&(+n&un)2�2Tn+e&(+n+un)2�2Tn)

+|
+�

+n

(e&(x&un)2�2Tn+e&(x+un)2�2Tn) dx=+unc1& (2.8)

Finally,

c3= lim
n � +� _(u2

n+2Tn) c1+un\n+n �Tn

2?
(e&(+n&un)2�2Tn+e&(+n+un)2�2Tn)

+\n(+2
n+2Tn) �Tn

2?
(e&(+n&un)2�2Tn&e&(+n+un)2�2Tn)

+3\nun �Tn

2? |
+�

+n

(e&(x&un)2�2Tn+e&(x+un)2�2Tn) dx& (2.9)

By (2.7) and (2.8),

un\n +n �Tn

2?
(e&(+n&un)2�2Tn+e&(+n+un)2�2Tn)<c2un

\n(+2
n+2Tn) �Tn

2?
(e&(+n&un)2�2Tn&e&(+n+un)2�2Tn)<c1(+2

n+2Tn)

\n un �Tn

2? |
+�

+n

(e&(x&un)2�2Tn+e&(x+un)2�2Tn)<c1Tn

Consequently,in the limit when n � +� in (2.9), c3=0 which contradicts
the hypotheses.
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We have thus proved that for c1 c3{c2
2 there are only the perturbative

Maxwellian solutions. For c1c3=c2
2 and (*, +) close enough to (�, 0), the

above proof implies that either the Maxwellian is of perturbative type con-
nected to T& , or that the O+ -situation holds. K

Remark. When c1 c3=c2
2 , it is the discussion in 1(ii) that only leads

to the O+ -control instead of the stronger uniqueness results that follow
from the implicit function theorem in the other cases. We do not exclude
that a more detailed analysis also in this case might prove the same type
of uniqueness as when c1 c3{c2

2 .

For c1c3<0 or c1c3> 25
16c2

2 , and (*, +) close enough to (�, 0), the
above proof implies that there is no Maxwellian with such c-values and
satisfying (2.5). For c1c3= 25

16c2
2 and any neighbourhood O of (\& , u& ,

T&)=(\+ , u+ , T+), the above proof implies that (\(*, +), u(*, +), T (*, +))
is in O for *, +&1 large enough.

For the stationary Boltzmann equation in a slab with given indata on
the boundary the following result was proved in [AN3].

Lemma 2.3. Consider a slab &a�x�a with ! the component of
the velocity v # R3 in the x-direction. Let indata fb be given on the bound-
ary with

|
&=!>0

[!(1+|v| 2+|log fb | )+(1+|v| ;)] fb(=a, v) dv<�, = # [&1, 1]

Given ; with 0�;<2 and m>0, there is a weak solution to the stationary
Boltzmann equation such that � (1+|v| ) ; f (x, v) dx dv=m, and with
indata kfb for some k>0.

Given ; with &3<;<0 and m>0, there is a mild solution to the
stationary Boltzmann equation such that � f (x, v) dx dv=m, and with
indata kfb for some k>0.

In the sequel we shall also need a result relating the distance of density
functions from the set of Maxwellians, to the magnitude of the collision
integrand.

Lemma 2.4. Consider a set of non-negative functions f that is
weakly compact in L1(R3). Given =, '>0, there is $>0, such that if

| ff
*

& f $f $
*

|<$
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in V$*_V$*_S2 outside of some subset of measure smaller than $, then for
some Maxwellian Mf (depending on f ),

|
V$*&'

| f&Mf | dv<=

Lemma 2.4 was proved in the R3 case in [A] and [N]. From those
proofs the present local version can be obtained similarly to the way the
corresponding result for the functional equation ff

*
& f $f $

*
=0 was

localized in [W].
Denote by (!, ', `) the three components of v # R3 and set _=

- '2+`2. In this paper, the hydrodynamic limit is considered for sub-
sequences of f =, solutions to

!
�f =

�x
=

1
=

Q( f =, f =), x # ]&1, 1[, v # R3 (2.10)

f =(&1, v)=M l (v), !>0, f =(1, v)=Mr(v), !<0 (2.11)

when the mean free path = tends to zero. Here

Ml (v) :=
\l

(2?Tl)
3�2 e&v2�2Tl, Mr(v) :=

\r

(2?Tr)
3�2 e&v2�2Tr

and

Q( f, f )(x, v) :=|
R 3_S2

b(%) /(v, v
*

, |) |v&v
*

| ; ( f $f $
*

& ff
*

) dv
*

d|

% # ]0, ?[ is the azimuthal angle between v&v
*

and |,

f
*

= f (x, v
*

), f $= f (x, v$), f $
*

= f (x, v$
*

)

v$=v&(v&v
*

, |) |, v$
*

=v
*

+(v&v
*

, |) |

Moreover,

/(v, v
*

, |)=0 if |v|�*, or |v
*

|�*,

or |v$|�*, or |v$
*

|�*,

or |!|�+, or |!
*

|�+,

or |!$|�+, or |!$
*

|�+,

/(v, v
*

, |)=1 else, ; # [0, 2[, b # L1
+(0, ?), b(%)�c>0, a.e.
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For * finite, the factor |v&v
*

| ; only introduces minor changes in the
arguments, so we shall only discuss the case ;=0. Under the boundary
conditions (2.11), there are cylindrically symmetric (with respect to the
variables (!, _)) functions f = solutions to (2.10)�(2.11). Only such solutions
are considered in the following. In particular,

| !' f =(x, v) dv=| !` f =(x, v) dv=0

under the cylindrical symmetry. By Green's formula the fluxes

(c=
i )1�i�3=\||!|�+, |v|�*

!(1, !, v2) f =(x, v) dv+
are constant in x with =-independent bounds determined by Ml and Mr .
Denote by (c=j

i )1�i�3 a converging subsequence with limit (ci (*, +))1�i�3 ,
when =j � 0. Either c1(*, +)=0 or c1(*, +){0. In this paper we only dis-
cuss such sequences of solutions with c1(*, +){0, and then��possibly after
a change of x-direction��take c1(*, +)>0, also requiring c=j

1>0 for all j.
Such systems can be considered to model an evaporation-condensation
situation with evaporation at x=&1 and condensation at x=1. We shall
further assume (for a subfamily in *, +) the existence of lim*, +&1 � � ci (*, +)
=ci , for i=1, 2, 3, with c1>0. The quantities *0 and +0 as defined in
Lemma 2.2 may be taken locally constant with respect to (c1 , c2 , c3)
satisfying the conditions of the lemma, and with *0 , +&1

0 so large that
negative T's are excluded. From here on we only consider such *�*0 ,
0<+�+0 , and 0<c1 c3< 25

16c2
2 .

The main results established in this paper are contained in the follow-
ing three theorems.

Theorem 2.5. Denote by

g= \x+1
=

, v+ := f =(x, v), a.a. x # ]&1, 1[, v # R3

Then there is a sequence (=j ) with limj � � =j=0, such that (g=j ) converges
weakly in L1([0, �[_R3) to a function g, which is a weak solution to the
half-space problem

!
�g
�x

=Q(g, g), x�0, v # R3

g(0, v)=Ml (v), !>0
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in the sense that for any x0>0, for any test function . with support in
[0, x0[_V$*

|
!>0

!Ml (v) .(0, v) dv+|
x0

0
|

R3 \!g
�.
�x

+Q(g, g) .+ dx dv=0

Remark. In this paper test functions are L�-functions, differentiable
in the x-variable for a.e. v # V $* with .(0, v)=0 for !<0.

An analogous result holds for h=((1&x)�=, v) :=f=(x, v) and Mr .

Theorem 2.6. Denote by S$ the union of [v # V $* ; +�|!|�++$,
_�4++$] and [v # V $* ; +�|!|�3++$, _�$]. If c1 c3=c2

2 , then include
in S$ also a $-neighbourhood in V $* of (c2 �c1, 0, 0). Either for all $>0

lim
x � � |

V $*"S$

g(x, v) dv=0

or

lim
x � � | | g(x, v)&M&(v)| dv=0

or

lim
x � � | | g(x, v)&M+(v)| dv=0

in the case c13{c2
2 , respectively

lim
x � �

inf | | g(x, v)&M*, +(v)| dv=0

in the case c1c3=c2
2 . Here M& , M+ are those defined in Lemma 2.2, and

in the notations of that lemma the infimum is taken over M*, + corre-
sponding to O+ and satisfying (2.5).

Remark. The solution g of the half-space problem in Theorem 2.5
satisfies the Milne problem in the sense of Theorem 2.6. The M+ -alter-
native is only possible in the case (iii) of Lemma 2.2.
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Theorem 2.7. Suppose c1c3{c2
2 . There is a sequence (=j ) such that

limj � � =j=0, and ( f =j ) converges in weak* measure sense to a non-
negative element f of L1((&1, 1); M(V$*)) that satisfies

|
V $*

!(1, !, v2) f (x, v) dv=(c1(*, +), c2(*, +), c3(*, +))

Moreover, there are measurable non-negative functions %&(x), %+(x) with
0�%&(x)+%+(x)�1, &1�x�1, such that for test functions , with sup-
port in V $*"S$ for some $>0,

| ,f (x, v) dv=| (%& M&+%+M+) , dv

Here we have written f (x, v) dv for the measure in the v-variable defined by
f (x, } ).

Remark. Also for this theorem, there is a (more involved) version
in the case c1c3=c2

2 .

3. BOUNDARY LAYER ANALYSIS AND THE HALF-SPACE
PROBLEM

This section is devoted to a proof of Theorem 2.5. The theorem is an
immediate consequence of Lemma 3.1�3.3 below.

Lemma 3.1. The family (g=) is weakly compact in L1((0, x0)_V $*).

Proof of Lemma 3.1. Since

| g=(x, v) dx dv�
1
+2 | !2g=(x, v) dx dv

(g=) is uniformly bounded in L1((0, x0)_V $*). It remains to prove the
uniform equiintegrability of (g=) in L1((0, x0)_V $*). If (g=) were not
uniformly equiintegrable on (0, x0)_V $* , then there would be a number
'>0, a sequence of subsets Vj of (0, x0)_V $* , and a subsequence of (g=),
denoted by (gj ), such that

=j � 0, |Vj |<
1
j 2 , and |

Vj

gj (x, v) dx dv>' (3.1)
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Denote by

Bj={x # ]0, x0 [; |[v # V $* ; (x, v) # Vj ]|�
1
j=

and by

Wj (x)=[v # V $* ; (x, v) # Vj ], x # ]0, x0 [

Then |Bj |�1�j, so that

|
B j

c |Wj (x)
gj (x, v) dv dx>

'
2

for j large enough. Only consider j so large that

c2(*, +)
2

�| !2gj (x, v) dv�2c2(*, +)

Set

B$j={x # Bc
j ; |

Wj (x)
gj (x, v) dv>

'
4x0=

W$j (x)={v # W j (x); g j (x, v)>
j'

8x0=
It holds that

|
B$j

dx |
Wj (x)

gj (x, v) dv>
'
4

And so for x # B$j ,

|
W$j (x)

gj (x, v) dv>
'

8x0

together with

|
B$j

dx |
W$j (x)

gj (x, v) dv>
'
8
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Using the exponential form of the equation for gj , it follows form x�x0 ,
*�!�+, that gj (x, v)�e&cx0M l (v), where c>0 is independent of j.

Set V $j (x)=[v # V $* ; g j (x, v)�2c2 �$+2]. Then |V $*&V $j (x)|<$. Let
x # B$j , v # W$j (x) be given. It follows that there is a subset Wj (x, v)/V $*_S 2

with measure uniformly in x, v, j bounded from below by a positive constant,
such that for (v

*
, |) # Wj (x, v) it holds that

gj (x, v
*

)�e&cx0 inf
V $*

Ml (v)

and that

2c2

$+2�max(gj (x, v$), gj (x, v$
*

))

Hence,

gj (x, v) gj (x, v
*

)& gj (x, v$) gj (x, v$
*

)�cgj (x, v)
(3.2)gj (x, v) gj (x, v

*
)

gj (x, v$) gj (x, v$
*

)
�cj

Integrating (3.2) over

Kj :=[(x, v, v
*

, |); x # B$j , v # W$j (x), (v
*

, |) # Wj (x, v)]

leads to

c'<
1

ln j |Kj

b(%) /(v, v
*

, |)(g j (x, v) g j (x, v
*

)& g j (x, v$) g j (x, v$
*

)

ln
gj (x, v) gj (x, v

*
)

gj (x, v$) gj (x, v$
*

)
dx dv dv

*
d|<

c$
ln j

which is impossible for j large enough. K

Lemma 3.2. The family (Q\(g=, g=)) is weakly compact in any
L1((0, x0)_V $*).

Proof of Lemma 3.2. It is sufficient to prove the weak compactness
of (Q&(g=, g=)). Then the weak compactness of (Q+(g=, g=)) will follow from
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the weak compactness of (Q&(g=, g=)) together with the boundedness of
the entropy production term. And so it is enough to prove the weak L1

compactness of (g=g=

*
). If this family were not compact, then for some

'>0, there would be a family (=j ) and a family of sets Bj/[0, x0]_V $*_
V $* with

|Bj |<
1
j 2 and |

Bj

g j g jV dx dv dv
*

>'

But then for each j, there would be a subset of [0, x0] of measure not
exceeding 1�j, outside of which the set Ax of (v, v

*
) such that (x, v, v

*
) # Bj ,

has measure bounded by 1�j. Since � gj (x, v) dv�2c2 �+2, the integral of
gj gjV over the first set is of magnitude �1�j. For x from the second set,

|
Ax

gj gjV dv dv
*

�
2c2

+2 sup
A$x

|
A$x

gj dv

for A$x/V $* , |A$x |< j &1�2. An application of Lemma 3.1 completes the
proof. K

Also using the regularizing properties of the equation, we get

Lemma 3.3. Denote by g the weak limit in L1((0, x0)_V $* ) of a
converging sequence of (gj ) with lim =j=0. For any test function . defined
on (0, x0)_V $* ,

lim
j � +� |

(0, x0)_V $*

.Q\(gj , gj )(x, v) dx dv=|
(0, x0)_V $*

.Q\(g, g)(x, v) dx dv

This can be proved similarly to the corresponding (more involved)
result in the time-dependent case [DL].

In Section 4 an entropy dissipation estimate for the half-space solution
g will be needed.

Lemma 3.4. � b/(gg
*

& g$g$
*

) log( gg
*

�g$g$
*

) dx dv dv
*

d|�c, where
the constant c only depends on the boundary values.

This easily follows from the corresponding inequality for g=, the weak
L1 compactness of (g=g=

*
) in the proof of Lemma 3.2, and the convexity of

the entropy-dissipation integrand.
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4. THE BEHAVIOUR AT INFINITY IN THE BOUNDARY LAYER

This section is devoted to a proof of Theorem 2.6.

Proof of Theorem 2.6. By the weak L1 convergence and by the
conservation properties, in the notation of Lemma 3.3,

| (!, !2, !v2) g(x, v) dv= lim
j � +� | (!, !2, !v2) gj (x, v) dv

Recall that in the preset setup, by Lemma 2.1�2.2 there are at most two
Maxwellians M& and M+ of perturbation type such that

| (!, !2, !v2) Mi (v) dv

=| (!, !2, !v2) g(x, v) dv=(c1 , c2 , c3), x # R+, i # [+, &]

Recall that for cj=lim*, +&1 � � cj (*, +) with 0<16c1 c3<25c2
2 , (cf. Sec-

tion 2 just before the statement of Theorem 2.6), and with c1c3{c2
2 , the

constants 0<+0 and 0<*0 are fixed, so that for 0<+�+0 , *0�* the
corresponding cj (*, +), j=1, 2, 3, still define the same number (one or two)
of Maxwellians. In the case c1c3=c2

2 , the set S$ as defined in Theorem 2.6
also contains a $-neighbourhood of (c2 �c1 , 0, 0), and M+ is replaced by an
O+ based family F of *, +-truncated Maxwellians satisfying (2.5).

Either for all $>0

lim
x � � |

V $*"S$

g(x, v) dv=0 (4.1)

or for some $>0 and some sequence (xj ) tending to infinity,

|
V $*"S$

g(x j , v) dv>2$ (4.2)

In the latter case g(x, } ) converges in L1(V $*) to either M& , M+ , or in the
the case c1 c3=c2

2 to the family F, as will now be proved.
Uniform continuity of g(x, } ) in the L1(V $*)-norm follows from the

equation for g and from supx � |Q(g, g)(x, v)| dv<�. This means that
given :>0, there is a(:)>0 such that

|
V $*

| g(x, v)& g( y, v)| dv<:

1010 Arkeryd and Nouri



for |x& y|<a(:). Take :=$ so that for a1=a($) by (4.2),

|
V $*"S$

g(x, v) dv>$ (4.3)

for |x&xj |�a1 , j # N. Set

G(x)=| b/(g$g$
*

& gg
*

) log
g$g$

*
gg

*
(x, v, v

*
, |) dv dv

*
d|

and (if necessary) take a subsequence (xj ) so that xj+1&x j>a1 , j # N. It
follows from �+�

0 G(x) dx<+� that

7j |
xj+a1

xj&a1

G(x) dx=|
a1

&a1

(7 jG( y+x j )) dy<+�

hence limj � +� G( y+xj )=0 a.e. in [&a1 , a1]. For such an y, the sub-
sequence (g(xj+ y, . )) is weakly L1(V $*) compact. Only the uniform equi-
integrability has to be discussed, and that follows similarly to the proof of
Lemma 3.1, but using the estimate (4.2) instead of estimating g(x, v

*
) from

below using boundary values. For this we start from such an y with

|
V $*"S$

g(x j+ y, v
*

) dv
*

>$, lim
j � +�

G(x j+ y)=0

Write gj (v) :=g(xj+ y, v). A Dirac measure limit for a subsequence of gj at
v=v0 implies !0�++$, _0=0, and is excluded when c1 c3{c2

2 , and by the
condition on S$ also when c1c3=c2

2 . Instead the following holds for some
d # ]0, $[. For all v0 # V $* and all j # N,

|
|v&v0 |�d

gj (v) dv�d (4.4)

If (gj ) is not uniformly equiintegrable, then there are a constant '>0 and
a sequence of subsets (Vj ) of V $* with |Vj |�1�j 2, such that

|
Vj

gj (v) dv>'

Similarly to Lemma 3.1 this is contradicted using an entropy dissipation
argument. Consider the following three cases.
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Either

|
Wj 1

gj (v) dv�
'
3

(4.5)

where Wj1 :=[v # V j & S$�2 ; _�10&3d ]. Or

|
Wj 2

gj (v) dv�
'
3

(4.6)

where Wj2 :=Vj"S$�2 . Or

|
Wj 3

gj (v) dv�
'
3

(4.7)

where Wj3 :=[v # V j & S$�2 ; _�10&3d ]. For any v in Wjk , k=1, 2, 3, the
contradiction follows from delineating for each j a set of v

*
's with volume

uniformly bounded from below by a positive constant, where gj (v
*

) is
uniformly in v

*
and j bounded away from zero, together with for each j

and v
*

a set of |'s in S2 of measure uniformly bounded away from zero,
that generate (from above) uniformly bounded gj (v$), g j (v$

*
), so that the

entropy dissipation argument applies.

Case 1(i). The bound (4.5) holds. Also using (4.3), assume in this
case that �W*

g j (v
*

) dv
*

�$�4, where

W
*

:={v
*

# V $*"S$ ; _�10&3d, gj (v
*

)>
$

4 |V $* |=
W

*
is invariant under rotation around the !-axis. Taking v # Wj1 , there is

sufficient volume of v
*

# W
*

and | # S2 for the entropy dissipation argu-
ment to apply and to exclude this case.

Case 1(ii). The bound (4.5) holds, but the second condition of 1(i)
is violated. And so using (4.3), �W*

gj (v*
) dv

*
�$�2, where W

*
=[v

*
#

V $*"S$ ; _
*

<10&3d ]. For v # Wj1 and v
*

# W
*

, notice that |v&v
*

|�$�2.
Write W

*
=A1 _ A2 _ A3 , with three disjoint subsets A1 , A2 , A3 , such that

inf
A1

gj (v*
)�sup

A2

gj (v*
)�inf

A2

gj (v*
)�sup

A3

gj (v*
)

and

|
A1

gj (v*
) dv

*
=|

A2

g j (v*
) dv

*
=|

A3

gj (v*
) dv

*
�

$
6
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Analogously split Wj1 into three disjoint sets B1 , B2 , B3 with the same
properties. Denote by S(v, v

*
) the subset of | # S 2 such that v$, v$

*
# V $* ,

_$�d�8 and _$
*

�d�8. We shall discuss the case when supA2
gj (v*

)�
infB1

gj (v) for an infinite sequence of j 's. The converse case is analogous
after changing the roles of v and v

*
. There is a positive uniform bound

from below C| for the measure of S(v, v
*

). Suppose 2 � gj (v*
) dv

*
�

�A2
gj (v*

) dv
*

where the first integral is taken over those v
*

# A2 for which
gj gjV�2g$j g$jV for at least half of S(v, v

*
). This cannot hold for infinitely

many j 's since

'
3

�|
Wj 1

gj (v) dv�CG(x j+ y) � 0, j � �

So the converse holds for infinitely many j 's. Then gj (v*
)�- 2 gj (v$) on at

least 1
4 th of S(v, v

*
). And so g j (v*

)�(4 - 2�C|) � gj (v$) d| where the
integral is over 1

4 th of S(v, v
*

). The Jacobian of the Carleman transforma-
tion of the gain term is uniformly bounded with respect to the relevant
v, v

*
, and | in respectively B1 , A2 , and S(v, v

*
).

Then switch from v
*

to such v$ at a distance �d�8 from the !-axis.
Cylindrical symmetry can be applied for v$ to generate enough volumes in
V $(v, v$, v$

*
) and V $

*
(v, v$, v$

*
) for the entropy dissipation argument to

apply, excluding this case when j is large enough.

Case 2(i). The bound (4.6) holds, and �W g j (v) dv>'�6, where
W=[v # Wj2 ; _�10&3d ]. Then denote by W� j2 the image set of W by
rotation around the !-axis. Moreover, given v, by (4.4)

|
W

*, v

gj (v*
) dv

*
>

d
2

, where W
* , v :={v

*
; |v

*
&v|�d, gj (v*

)>
d

2 |V $* |=
Taking v # W� j2 , v

*
# W

* , v and using rotation around the !-axis in W� j2 ,
generates volumes bounded from below for which gj (v$), gj (v$

*
) are

uniformly bounded from above and for which the entropy dissipation argu-
ment applies, excluding this case when j is large enough.

Case 2(ii). The bound (4.6) holds, and �Wj
gj (v) dv>'�6, where

Wj=[v # Wj2 ; _<10&3d ]. Then, either given v, by (4.4)

|
|v*&v|�d, _*�10&3d

gj (v*
) dv

*
>

d
2

For such v # Wj , taking v
*

in the image set by rotation around the
!-axis of [v

*
# V $* ; |v

*
&v|�d, _

*
�10&3d, gj (v*

)>d�(4 |V $
*

|)], and taking
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suitable | # S 2, gives a setting where the entropy dissipation argument
applies. Or otherwise

|
|v*&v|�d, _*<10&3d

gj (v*
) dv

*
>

d
2

and the argument of Case 1(ii) can be used. And so this type of concentra-
tion is excluded.

Case 3. The bound (4.7) holds. Denote by W� j3 the image set of W j3

by rotation around the !-axis. Then �W� j 3
gj (v) dv>'�3. Taking v # W� j3 ,

suitable v
*

# V $*"S$ and | # S2, generates using (4.3), a setting where the
entropy dissipation argument applies as in the earlier cases, thus excluding
also this final possibility.

We conclude that (gj ) is uniformly equiintegrable. It then follows for
y with lim j � � G( y+xj )=0 from the weak L1-compactness just proved
and using Lemma 2.4, that there is a sequence (Mj (v)) of Maxwellians such
that

lim
j � � | | g(xj+ y, v)&Mj (v)| dv=0

Moreover,

lim
j � � | (!, !2, !v2) Mj (v) dv=(c1(*, +), c2(*, +), c3(*, +))

Except in the case c1c3=c2
2 and T

*
=0, this implies (for a subsequence)

that limj � � � |Mj (v)&M&(v)| dv=0 or lim j � � � |Mj (v)&M+(v)| dv=0.
It then remains to prove that

lim
x � � | | g(x, v)&M&(v)| dv=0

in the first case, and that

lim
x � � | | g(x, v)&M+(v)| dv=0

in the second case. We carry out the proof in the first case. Let

0<=<min _$, 10&1 | |M&(v)&M+(v)| dv, 10&1 |
V $*"S$

M&(v) dv& (4.8)
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be given. Let us prove that for x large enough, � | g(x, v)&M&(v)| dv<2=,
when we already know that there is j0 , such that

| | g(xj+ y, v)&M&(v)| dv<=, j� j0

Let a2 be such that

| | g(r, v)& g(s, v)| dv<=, |r&s|<a2

We have

|
V $*"S$

g(xj+ y, v) dv

�|
V $*"S$

M&(v) dv&|
V $*"S$

| gj (xj+ y, v)&M&(v)| dv

�10=&==9=, j� j0

And so,

|
V $*"S$

g(z, v) dv>8=, z # [x j+ y&a2 , xj+ y+a2], j� j0

Now limX � +� �+�
X G(x) dx=0, and so given '>0, there is X1>0 such

that meas[z>X1 ; G(z)>']<a2 �6. So for j� j0 there is zj # [xj+ y+
2a2 �3, xj+ y+a2] such that G(zj )<'. Here '>0 has by the previous dis-
cussion been chosen small enough, so that

min \| | g(zj , v)&M&(v)| dv, | | g(zj , v)&M+(v)| dv+<=

But

| | g(zj , v)&M+(v)| dv

>| |M+(v)&M&(v)| dv

&\| |M&(v)& g(xj+ y), v)| dv+| | g(xj+ y, v)& g(zj , v)| dv+>8=
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Hence

min \| | g(z j , v)&M&(v)| dv, | | g(zj , v)&M+(v)| dv+
=| | g(zj , v)&M&(v)| dv<=

| | g(z, v)&M&(v)| dv

<| | g(z, v)& g(z j , v)| dv+| | g(zj , v)&M&(v)| dv

<2=, z # [xj+ y, xj+ y+a2]

We can now repeat the above discussion from xj+ y+a2 instead of xj+ y,
and in a finite number of iterations reach xj+1+ y.

In the remaining case when c1c3=c2
2 and T+=0, we replace

� |M&(v)&M+(v)| dv with inf � |M&(v)&M*, + | dv. Here the infimum is
taken over the family F of (*, +)-truncated Maxwellians M*, + according to
Lemma 2.2. Using (2.5) we choose (*0 , +0) so that the infimum in (4.8) is
positive in this case. Then the above proof can be repeated in the case T+=0,
if M+ is replaced by relevant members M*, + from the family F. K

5. A HYDRODYNAMIC LIMIT IN THE SLAB

This section is devoted to a proof of Theorem 2.7.

Proof of Theorem 2.7. Let 0<=j , j # N, be a decreasing sequence
with 7j =j<�, and with f=j

converging in weak* measure sense to a
measure f. Write f=j

= fj . Set

G=(x)=| b/( f $= f $=V& f= f=V) log
f $= f $=V

f= f=V

(x, v, v
*

, |) dv dv
*

d|

The above hypotheses imply that

|
1

&1
7jG=j

(x) dx�C7j =j<�

And so for a.e. x,

7j G=j
(x)<�
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and in particular limj � � G=j
(x)=0. Moreover, given m # N, in the comple-

ment Im of some set of measure less than m&1 in [&1, 1], G=j
converges

uniformly to 0 when j tends to infinity. Let /m(x) be the characteristic
function of Im . Let /jn(x, v) be the characteristic function (in x) of those
x # [&1, 1], for which �V $*"Sn&1 f j (x, v) dv>n&1, multiplied with the
characteristic function (in v) of V $*"Sn&1 . We may take the sequence ( fj ) so
that for each m, n # N, the sequence ( f j/jn/m) j # N converges in weak*
measure sense. By a variant of the reasoning in Section 4, the sequence is
also weakly compact in L1((&1, 1)_V $*), and with a weak* measure limit
%nm

& M&+%nm
+ M+ . Here %nm

& , %nm
+ are increasing as functions of m, n with

limits %& , %+ , and as functions of x they satisfy 0�%nm
& (x), %nm

+ (x), %nm
& (x)

+%nm
+ (x)�1 with %+#0 in the case c2

2>c1c3 . For test functions , with
support in V $*"Sn&1 ,

} | fj (1&/ jn) , dx dv }�2 &,&� n&1

Also

| f j (1&/m) dx dv�m&1 c2

+2

And so

| ,f dx dv= lim
j � � | f j, dx dv= lim

j � � | f j (1&/m) , dx dv

+ lim
j � � | f j (1&/jn) /m, dx dv+ lim

j � � | fj/jn /m, dx dv

=| (%&M&+%+M+) , dx dv+Onm

where Onm tends to zero when n, m � �. And so

| ,f dx dv=| (%&M&+%+M+) , dx dv

By the same argument for any $>0, for any test function , and with / the
characteristic function of V $*"S$ ,

| ,/f dx dv=| (%&M&+%+M+) /, dx dv
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It follows that f is composed of a singular measure on [&1, 1]_S0 ,
together with a Lebesgue absolutely continuous measure with density
%& M&+%+M+ . Finally � ,f dv is Lebesgue measurable in x and

| !(1, !, v2) f dv=(c1 , c2 , c3)(*, +) K
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